翻訳と辞書
Words near each other
・ Transfiguration Church, Navahrudak
・ Transfiguration Church, Polotsk
・ Transfiguration Church, Szentendre
・ Transfiguration Monastery
・ Transfiguration Monastery, Staraya Russa
・ Transfiguration of Christ (Bellini)
・ Transfiguration of Jesus
・ Transfiguration of Jesus in Christian art
・ Transfiguration of Our Lord Chapel
・ Transfiguration of our Lord Parish Church (Cavinti)
・ Transfiguration of our Lord Russian Orthodox Church
・ Transfiguration of Vincent
・ Transfigurations
・ Transfinite
・ Transfinite induction
Transfinite interpolation
・ Transfinite number
・ Transfix
・ Transflective liquid-crystal display
・ Transfluthrin
・ TransForce
・ Transform
・ Transform (consulting firm)
・ Transform (EP)
・ Transform (Powerman 5000 album)
・ Transform (Rebecca St. James album)
・ Transform coding
・ Transform Drug Policy Foundation
・ Transform fault
・ TRANSform Me


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Transfinite interpolation : ウィキペディア英語版
Transfinite interpolation
In numerical analysis, transfinite interpolation is a means to construct functions over a planar domain in such a way that they match a given function on the boundary. This method is applied in geometric modelling and in the field of finite element method.
The transfinite interpolation method, first introduced by William J. Gordon and Charles A. Hall,〔 receives its name due to how a function belonging to this class is able to match the primitive function at a nondenumerable number of points.
In the authors' words:
== Formula ==

With parametrized curves \vec_1(u), \vec_3(u) describing one pair of opposite sides of a domain, and
\vec_2(v), \vec_4(v) describing the other pair. the position of point (u,v) in the domain is

\begin
\vec(u,v)&=&(1-v)\vec_1(u)+v\vec_3(u)+(1-u)\vec_2(v)+u\vec_4(v)\\
&& -
\left()
\end

where, e.g., \vec_ is the point where curves \vec_1 and \vec_2 meet.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Transfinite interpolation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.